

The Solutions Network

Rochester, New York

DOD Renewables Purchasing Strategy

Objectives, Execution Options, and Plans to Date

Mike Warwick - August 2004

Objectives

- "Cheaper" (eliminate premium)
- * "Better" (stimulate interest in on-base resource development for energy security and near base development for energy reliability)
- "Longer" (long-term, fixed price supply contract)
- "Greener" (meet current/future renewables goals, offset own air emissions)
- "Smarter" (alternative path to meet EO 13123 efficiency goals)

Cheaper/Longer Objective: Reduce Premium

Strategy - purchase majority of output from <u>new</u> resources at price lower than current green price

Tactics

- Aggregate loads to meet developer requirements (purchase must be large enough to help with financing)
- Long term contract to underwrite construction
- Tie price to construction cost (not market)
- Buy early (lower cost project output from "best" sites)

Better

Objective: Energy Security/Reliability

Strategies – Purchase from resources on/near installations. Implement "strategic island" concept with utility.

Tactics

- Regional purchase
- Long term contract to underwrite development cost
- Utility collaboration on strategic island, curtailment order, etc.

Greener

Objective: Meet EE/RE Goals, Good Citizen, Reduce Emissions

Strategy – On- and adjacent to- base resource development

Tactics

- Tie purchase to on-base/adjacent projects
- At minimum tie purchase to "electrically adjacent" projects (same RTO/ISO/control area)
- Offset mission related emissions
- Negotiate with local air quality board on size/contents of "cap," acceptable trade offs, if possible.

Smarter

Objective: Meet Renewable/

EE Requirements

- Strategy Purchase renewables
- Tactic
 - Purchase least-cost (lowest premium) resources to meet at least minimal renewable requirement
 - Purchase/develop additional renewables at sites where cost is lower/pay back better than EE project costs

The Solutions Network

Rochester, New York

Execution Options

Three Major Options

Renewable Power Purchase

Contract for output from specific project(s) to be delivered to specific installations

Green Tag Purchase

Pay price differential for renewable (above conventional power cost)

Green Tag "with teeth"

Require tag to come from local source at fixed (lower) price, require documentation of progress towards development of new resources near installation to support security/reliability.

Green Power Purchase

What is a Renewable Energy Certificate (REC)?

Green "Credits" (RECs) are Fungible Assets

Conventional power facilities

Renewable power facilities

Wholesale power market

Customer 1: Power purchase (may include credits for required RPS)

Renewable power, even intermittent power, can be sold for regular power price

Customer 2: REC transaction

RECs purchased independently from

"Green-ness" can be sold independent of power, for "extra."

Purchase: Pros

- Tie price to specific project
 - Could be below current market price
 - Provides price stability
 - Provides hedge against higher future prices (for green or dirty power)
- Location specific for energy security/reliability, potential emissions trading
- Long term contract provides leverage with developers of new resources
- Direct benefit to development of on-site resources (provides ready market for on-site projects)

Purchase: Cons

- State regulations/utility objections often prevent
- Difficult to contract for resources that aren't built and difficult to contract long term
- Power has to be firmed, shaped, and wheeled to multiple sites through multiple utilities
- Project may not be adjacent to all installations getting power
- Performance and cost of project unknown in advance (may not be stable or good price hedge)
- Comparable terms for transmission difficult to obtain (few developers or ANY projects can obtain long-term firm transmission access)

Green Tag: Pros

- Not tied to specific plant or location
 - No wheeling required
 - No firming required
 - Don't have to deal with local utility or regulations
 - Can purchase where local renewable potential is low or costs high
- Can be purchased independently by each installation (no need to aggregate)

Green Tags: Cons

- Payment separate from and above regular power bill
 - Can't reduce bill unless tag resold (not always possible)
 - Doesn't provide a price hedge unless tag sold
- No security/reliability value because "footloose" (not local)
- Can't offset air emissions
- Some uncertainty about nature of a tag (is it "power" or a derivative?)
- Not clear that aggregation will reduce price

Green Tags with "Teeth" Concept

- Tags purchased from specific, new project on long term contract to provide developers with fungible asset and buyers with "fixed" price
- Potential for immediate delivery under contract, with ramp (low to start, up to 100% after new resources on-line)
- Power tied to new resources near installations receiving tags after X years
- Provider required to show "progressive" evidence (the "teeth") of resources noted above (land lease, permits, construction, etc.)

Green Tags with "Teeth": Pros

- Tied to local development
 - Enhances local energy security/reliability
 - Increases developer interest in on ste projects
 - May be able to use to offset air emissions
- Local source, but no wheeling complications
 - Can be done without utility cooperation
 - No firming or transmission required
- Long term contract
 - Should reduce price premium
 - May provide price hedge feature
 - Could be tailored to construction schedule of each resource (i.e., longer ramp for geothermal)
 - Easier to justify contract for future resource
- Amenable to aggregation, quantity discount
- Concept easily adapted to any region (where there is power pool and REC market)

Green Tags with "Teeth": Cons

- Payment separate from and above regular power bill
 - Can't reduce bill unless tag resold (not always possible)
 - Doesn't provide a price hedge unless tag sold
- Risk that developer just takes premium during "ramp up" and doesn't develop local resource (despite the "teeth")

The Solutions Network

Rochester, New York

Proposed Strategies

Purchases need to Adapt to Markets/Options

- Green power purchases require green power to be delivered.
 That means it has to be:
 - In the transmission grid
 - In a "choice" state
- Green power developers need markets to sell to, so:
 - Few projects exist where resources are poor (and costs would be high)
 - > Few projects exist where there is no "demand," such as an RPS.
- Price premiums require large purchases (via load aggregation) and long term contracts These are MAJOR procurement challenges (have to work with multiple sites, agencies, procurement staff, etc.)

Procurement Options

- Aggregate behind a PMA
- Aggregate in "choice" state or region behind DESC
- * "Special deal" with utilities in "non-choice" states
- "One off" deals one installation at a time

Current Strategies

- WAPA Central Valley
- WAPA Arizona
- PJM
- Florida (Cape Canaveral deal)
- Alaska
- BPA Post-2006/2011
- Tags to bridge to "choice"

WAPA Central Valley

- WAPA co-serves DoD loads in PG&E area
- ❖ WAPA allocation being reduced ~50%
- Customers need to choose between 100% WAPA or PG&E, but WAPA will have to "make up" difference from market
- Requesting 50 to 100% green power quotes in power supply RFP to be issued in the Fall

WAPA Arizona

- Arizona is the only "choice" state in WAPA area
- Plan to solicit green power from competitive suppliers (WAPA will continue to provide what they do now, supplemented by competitive supply)

Pennsylvania, Jersey, Maryland (PJM)

- Area is in an RTO (the PJM RTO)
- All states are "choice" states and DESC and GSA active in market
- RPSs being adopted by all states
- PJM RTO may implement REC market
- Renewable resources are available (wind, biomass) and developers are "ready"
- May be candidate for "tags with teeth"

Florida

- Major US wind developer (FPL) is in state
- Wind is so-so, but Cape Canaveral site is one of the best in the state
- Wind would displace current power at same price
- Need to overcome siting, radar, other issues

Alaska

- Anchorage utility has identified site on DoD land as one of the best
- Project site wouldn't supply much power, just supplement power to two DoD sites
- Utility also wants to develop a better site to supply DoD/Federal loads, but it will take longer (due to island location)

BPA Post-2006/2011

- Traditionally, BPA has refused to serve federal loads being served by BPA customer utilities (despite legal right to do so)
- BPA is proposing a WAPA-like allocation for contracts after 2006/2011
- BPA utilities will have to assume some "supply risk"
- If their DoD loads switch to green power, it will reduce this risk
- Will BPA utilities facilitate aggregate green power purchases by DoD?

Tags to Bridge

- AF and DESC already purchasing RECs from Texas REC market
- DESC already purchasing tags elsewhere, but in small quantities
- Can we do something innovative to procure large quantities of RECs at low prices until more "choice" is available?

Down the Road

- WAPA II -- California outside the Central Valley, when/if California allows retail choice (probably around 2010)
- Montana/Dakotas Coal/Wind integration option. Coal plants built around 2010 will include new transmission lines that can tap "trapped" wind resources in these states.